Vol. 9 No. 1 (2017): Archives of Public Health
Clinical Science

Оsteogenesis and rehabilitation in pertrochanteric fractures with dynamic hip screw- DHS

Билјана (Biljana) Митревска (Mitrevska)
Institute for physical medicine and rehabilitation, Skopje, Medical faculty, University Sts. Ciril and Metodius, Skopje
Анастасика (Anastasika) Попоска (Poposka)
Универзитетска Клиника за трауматологија, ортопедски болести, анестезиологија, интезивно лекување и ургентен центар, Медицински факултет, Универзитет Св. Кирил и Методиј, Република Македoнија (University Clinic for traumatology, orthopedics, anestesiology, intensive care and urgent Center, Skopje, Medical faculty, University Sts. Ciril and Metodius, Republic of Macedonia)
Емилија (Emilija) Гркова-Мишковска (Grkova Miskovska)
Institute for physical medicine and rehabilitation, Skopje, Medical faculty, University Sts. Ciril and Metodius, Skopje
Валентина (Valentina) Коевска (Koevska)
ЈЗУ Завод за физикална медицина и рехабилитација- Скопје, Медицински факултет, Универзитет Св. Кирил и Методиј (Institute for physical therapy and rehabilitation Skopje, Medical faculty, University Sts. Ciril and Metodius, Republic of Macedonia)
Марија (Marija) Гоцевска (Gocevska)
ЈЗУ Завод за физикална медицина и рехабилитација- Скопје, Медицински факултет, Универзитет Св. Кирил и Методиј (Institute for physical therapy and rehabilitation Skopje, Medical faculty, University Sts. Ciril and Metodius, Republic of Macedonia)

Published 2017-08-19

How to Cite

1.
Митревска (Mitrevska) Билјана (Biljana), Попоска (Poposka) Анастасика (Anastasika), Гркова-Мишковска (Grkova Miskovska) Емилија (Emilija), Коевска (Koevska) Валентина (Valentina), Гоцевска (Gocevska) Марија (Marija). Оsteogenesis and rehabilitation in pertrochanteric fractures with dynamic hip screw- DHS. Arch Pub Health [Internet]. 2017 Aug. 19 [cited 2024 Apr. 19];9(1):52-7. Available from: https://id-press.eu/aph/article/view/1017

Abstract

Ovarian cancer is the fifth leading cause of cancer deaths and has the highest mortality rate among gynecologic cancers in women in North America and Europe.The aim of this study wasto analyze the correlation between E-cadherin expression and clinical and pathohistological features and overall survival in advanced-stage serous ovarian carcinoma. Methods. The expression of E-cadherin was examined immunohistochemically in deparaffinized and rehydrated tissue samples from 36 patients with advanced- stage serous ovarian cancer, in whom surgery was first choice of treatment. All patients completed their chemotherapy treatment. Stage of the disease according to International Federation of Gynecology and Obstetrics (FIGO),  tumour  differentiation, number of mitoses on 10 high-power magnification fields (HPF), the size of the residual tumour, and lymphovascular invasion were included as clinicopathological characteristics. Included were only patients with serous ovarian cancer FIGO stages  III–IV. We determined the Overall survival (OS) as the time from surgery to the last follow-up date. The analyzed histological samples were retrieved from the files of the Institute of Pathology, Medical Faculty-Skopje from 2010 to 2013. We examined OS by using Kaplan–Meier method and log-rank test to assess the differences between the two E-cadherin groups, positive and negative. Multivariate analyses were done with the Cox"˜s model.Results. Statistical analysis found that E-cadherin immunoreactivity wasnot in correlation with FIGO stage, tumor grade, residual tumor volume and vascular invasion. Negative E-cadherin expression predicts shorter OS (p < 0.001). Multivariate analyses shows that negative E-cadherin expression (p< 0.001), FIGO stage (p=0.012) and residual tumor volume > 1 cm after primary cytoreductive surgery (p<0.001) are predictors of shorter OS. Conclusion. Negative E-cadherin expression seems to predict unfavorable clinical outcome in patients with advanced serous ovarian cancer as well as higher FIGO stage and residual tumor volume after primary surgery. Negative E-cadherin expression emerges as a significant independent predictor for poorer OS. In conclusion, the analysis have revealed that E-cadherin has prognostic value as a marker.

Downloads

Download data is not yet available.

References

  1. Santora TA, Schinco MA, Trooskin SZ. Management of trauma in eldery patient. Surg.Clin North Am.1994;74:163-186.
  2. Schwab CW, Kauder DR. Trauma in geriatric patient.Arch Surg.2002;127:701-706.
  3. Jensen JS.Classification of trochanteric fractures. Acta OrthopedicaScandinavica,1980; 51:1-6: 803-810.
  4. Mariana BC et al: Physical therapy in postoperative of proximal femur fracture in elderly.Literature review, Acta Orthop.Bras.2013,may-jun; vol.21(3):175-78.
  5. Binder EF.at al: effects of extended outpatient rehabilitation after hip fracture, JAMA,2004;292(7):837-46.
  6. R.Perkins, A.P.Skirving: Callus formation and the rate of healing of femoral fractures in patients with head injuries, The Journal of bone and joint surgery, 1987;vol.69-B,No.4:521-524.
  7. Eastaugh- Waring SJ. Joslin CC. W Hardy JR. Cunningham JL. Quantification of fracture Healing from Radiographs using the Maximum callus Index. Clin. Orthop. Relat.Res. 2009;467(8):1986-1991
  8. Morshed S. Current Options for determining fracture union. Advances In medicine. 2014; volume2014: article ID 708574: http://dx.doi.org/10.1155/2014/708574
  9. Alexa O. Electrically induced osteogenesis II experimental studies. Rev.Med.Chir.Soc.Med.Nat Iasi.1996jan; 100 (1-2): 62-65
  10. Fredericks DC. Nepola JV. BakerJT. Abbot J. Effects of PEMP on bone healing in rabbit tibial osteotomy model. J.Orthop. Trauma. 2000;14(2):93-100
  11. Pickering SAW, Scammell BE. Electromagnetic fields for Bone healing. Lower extremity Wounds. 2002;1(3): 152-160.
  12. Inone N, Ohnishi I, Chen D, et al. Effect of pulsed electromagnetic fields(PEMP) on late- phase osteotomy gap healing in a canine tibial model. J.Orthop. Res.2002Sep; 20(5): 1106-14.
  13. Povoroznyuk V, Dedukh N, Makogonchuk. Effect of aging on fracture healing. Gerontologija.2014; 15(2):97-102
  14. Ibiwoye MO. Bone mass is preserved in a critical- sized osteotomy by low energy pulsed electromagnetic fields as quqntitayed by in vivo micro- computed tomography, J.Orthop.Res. 2004;22(5):1086-93
  15. Henry LS, Concannon JM, Yee JG. The effect of magnetic fields on Wound Healing. Eplasty.2008;8:e40.
  16. Griffin M, Bayat A. Electrical Stimulation in Bone Healty: Critical Analysis by Evaluating Levels of Evidence. Eplasty. 2011; 11:e34.
  17. Sharrard WJ. A double- blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J.Bone Joint Surg.Br.1990May;72(3): 347-355.
  18. Madronero A, Pitillas I, Manso FJ. Pulsed electromagnetic field treatment failure in radius non-united fracture healing. Journal of Biomedical Engineering. 1980;10(5): 463-466.
  19. Borsalino G, Bagnacani M, Bettati E, et al. Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clin Orthop Relat Res.1988 Dec; (237): 256-63.