Contemporary Views of Iron Homeostasis with Main Focus of Hepcidin - New Hormone Regulator of Iron Metabolism

Main Article Content

Biljana Ilkovska
Bisera Kotevska
Georgi Trifunov

Abstract

Iron is an essential element of almost all living organisms. It is key functional part of oxygen transporters, depositary molecules and many enzymes which catalyze redox reactions necessary to generate the energy, products of various metabolic intermediates and defense. Studies have shown that a key regulator of iron homeostasis is hepcidin and set the liver as the central authority in the system of iron homeostasis. Hepcidin is cationic peptide composed of 25 amino acids and four disulfide bonds. Recently it was revealed that circulating hepcidin with a relatively high affinity is bound to α2-macroglobulin and with relatively low affinity is bound to albumin. In addition to its role in regulation systemic metabolism of iron, hepcidinot can contribute to host defense. Hepcidinot was originally identified as an antimicrobial peptide and found that it could indirectly contribute to host defense by reducing the concentration of iron in plasma.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Ilkovska B, Kotevska B, Trifunov G. Contemporary Views of Iron Homeostasis with Main Focus of Hepcidin - New Hormone Regulator of Iron Metabolism. Maced Med Electron J [Internet]. 2015 Aug. 12 [cited 2024 Apr. 19];1(1):1-14. Available from: https://id-press.eu/mmej/article/view/345
Section
Basic Medicine

References

Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33: 940-959. http://dx.doi.org/10.1016/S1357-2725(01)00063-2 DOI: https://doi.org/10.1016/S1357-2725(01)00063-2

Tomas Ganz. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783-8. http://dx.doi.org/10.1182/blood-2003-03-0672 PMid:12663437 DOI: https://doi.org/10.1182/blood-2003-03-0672

Beard JL, Dawson HD. Iron. In: O’Dell BL, Sunde RA, editors. Handbook of Nutritionally Essential Mineral Elements. New York: CRC Press, 1997: pp. 275-334.

Wood RJ, Ronnenberg A.Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ, Modern Nutrition in Health And Disease. 10th ed. Baltimore: Lippincott Williams & Wilkins, 2005. pp. 248-70. PMid:16019112

McDowell LR. 2nd ed. Amsterdam: Elsevier Science. Minerals in Animal And Human Nutrition, 2003: p. 660. DOI: https://doi.org/10.1016/B978-0-444-51367-0.50010-6

Guggenheim KY. Chlorosis: The rise and disappearance of a nutritional disease. J Nutr.1995;125:1822-5. PMid:7616296 DOI: https://doi.org/10.1093/jn/125.7.1822

Nazanin A, Richard H, Roya K. Review on iron and its importance for human health. J Res Med Sci. 2014; 19(2): 164-174.

Yip R, Dallman PR, Ziegler EE, Filer L. Present knowledge in nutrition. 7th ed. Washington DC: ILSI Press, 1996: pp. 278-92.

Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425-33. http://dx.doi.org/10.1182/blood-2011-01-258467 PMid:21346250 PMCid:PMC3099567 DOI: https://doi.org/10.1182/blood-2011-01-258467

Andrews NC . Forging a field: the golden age of iron biology. Blood. 2008;112(2):219-230. http://dx.doi.org/10.1182/blood-2007-12-077388 PMid:18606887 PMCid:PMC2442739 DOI: https://doi.org/10.1182/blood-2007-12-077388

Laufberger V. Sur la cristallisation de la ferritine. Bulletin de la Societe de chimie biologique. 1937;19:1575-1582.

Worwood M. In: Iron in Biochemistry and Medicine, II. A.a.W. Jacobs M, editor. London: Academic Press, 1980: pp. 204-244.

Addison GM, Beamish MR, Hales CN, Hodgkins M, Jacobs A, Llewellin P. An immunoradiometric assay for ferritin in the serum of normal subjects and patients with iron deficiency and iron overload. J Clin Pathol. 1972;25:326-329. http://dx.doi.org/10.1136/jcp.25.4.326 PMid:5063755 PMCid:PMC477303 DOI: https://doi.org/10.1136/jcp.25.4.326

Jacobs A, Miller F, Worwood M, Beamish MR, Wardrop CA. Ferritin in the serum of normal subjects and patients with iron deficiency and iron overload. Br Med J. 1972;4:206-208. http://dx.doi.org/10.1136/bmj.4.5834.206 PMid:5082548 PMCid:PMC1786481 DOI: https://doi.org/10.1136/bmj.4.5834.206

Jacobs A, Worwood M. Ferritin in serum. Clinical and biochemical implications. N Engl J Med. 1975;292:951-956. http://dx.doi.org/10.1056/NEJM197505012921805 PMid:1090831 DOI: https://doi.org/10.1056/NEJM197505012921805

Pigeon C, Ilyin G, Courselaud B, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276: 7811-7819. http://dx.doi.org/10.1074/jbc.M008923200 PMid:11113132 DOI: https://doi.org/10.1074/jbc.M008923200

Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276: 7806-7810. http://dx.doi.org/10.1074/jbc.M008922200 PMid:11113131

Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480: 147-150. http://dx.doi.org/10.1016/S0014-5793(00)01920-7 DOI: https://doi.org/10.1016/S0014-5793(00)01920-7

Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202:199-211. http://dx.doi.org/10.1016/j.taap.2004.06.021 PMid:15629195 DOI: https://doi.org/10.1016/j.taap.2004.06.021

Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341: 1986-1995. http://dx.doi.org/10.1056/NEJM199912233412607 PMid:10607817 DOI: https://doi.org/10.1056/NEJM199912233412607

Tandara L, Salamunic I. Iron metabolism: current facts and future directions. Biochem Med. 2012; 22(3): 311-328. http://dx.doi.org/10.11613/BM.2012.034 DOI: https://doi.org/10.11613/BM.2012.034

Munoz M, Villar I, Garcia-Erce JA. An update iron physiology. World J Gastroenterol. 2009; 15(37): 4617-4626. http://dx.doi.org/10.3748/wjg.15.4617 PMid:19787824 PMCid:PMC2754509 DOI: https://doi.org/10.3748/wjg.15.4617

McKie AT, Barrow D, Latunde-Dada GO, et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science. 2001;291:1755-9. http://dx.doi.org/10.1126/science.1057206 PMid:11230685 DOI: https://doi.org/10.1126/science.1057206

Canonne-Hergaux F, Gruenhied S, Ponka P, et al. Cellular and subcellular localisation of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood. 1999; 93:4406-17. PMid:10361139 DOI: https://doi.org/10.1182/blood.V93.12.4406

Andrews, NC. Metal transporters and disease. Curr Opin Chem Biol. 2002;6:181-6. http://dx.doi.org/10.1016/S1367-5931(02)00307-1 DOI: https://doi.org/10.1016/S1367-5931(02)00307-1

Garric MD, Singleton ST, Vargas F, et al. DMT1: Which metals does it transport? Biol Res. 2006; 39: 79-85. http://dx.doi.org/10.4067/s0716-97602006000100009 DOI: https://doi.org/10.4067/S0716-97602006000100009

Conrad ME, Umbreit EG, Moore LN, et al. Separate pathways for cellular uptake of ferric and ferrous iron. Am J Physiol Gastrointest Liver Physiol. 2000;279:767-74. DOI: https://doi.org/10.1152/ajpgi.2000.279.4.G767

Umbreit JN, Conrad, ME, Hainsworth LN, et al. The ferrireductase paraferritin contains divalent metal transporter as well as mobilferrin. Am J Physiol Gastrointest Liver Physiol. 2002;282:534-39. http://dx.doi.org/10.1152/ajpgi.00199.2001 PMid:11842004 DOI: https://doi.org/10.1152/ajpgi.00199.2001

Simovich MJ, Conrad ME, Umbreit JN, et al. Cellular localisation of proteins related to iron absorption and transport. Am J Hematol. 2002;69:164-70. http://dx.doi.org/10.1002/ajh.10052 DOI: https://doi.org/10.1002/ajh.10052

Latunde-Dada GO, Takeuchi K, Simpson RJ, McKie AT. Haem carrier protein 1 (HCP1): Expression and functional studies in cultured cells. FEBS Lett 2006;580:6865- 870. http://dx.doi.org/10.1016/j.febslet.2006.11.048 PMid:17156779 DOI: https://doi.org/10.1016/j.febslet.2006.11.048

Shayeghi, M, Latunde-Dada GO, Oakhill JS, et al. Identification of an intestinal heme transporter. Cell. 2005;122:789-801. http://dx.doi.org/10.1016/j.cell.2005.06.025 DOI: https://doi.org/10.1016/j.cell.2005.06.025

Qiu A, Jansen M, Sakaris A, et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell. 2006;127:917-28. http://dx.doi.org/10.1016/j.cell.2006.09.041 PMid:17129779 DOI: https://doi.org/10.1016/j.cell.2006.09.041

Liu K, Kaffes AJ. Iron deficiency anaemia: a review of diagnosis, investigation and managment. Eur J Gastroenterol Hepatol. 2012;24:109-16. http://dx.doi.org/10.1097/MEG.0b013e32834f3140 PMid:22157204 DOI: https://doi.org/10.1097/MEG.0b013e32834f3140

Ma Y, Yeh M, Yeh K, et al. Iron Imports V: Transport of iron through the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol. 2006;290:417-22. http://dx.doi.org/10.1152/ajpgi.00489.2005 PMid:16474007 DOI: https://doi.org/10.1152/ajpgi.00489.2005

McKie AT, Marciani P, Rolfs A, et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000;5:299-309. http://dx.doi.org/10.1016/S1097-2765(00)80425-6 DOI: https://doi.org/10.1016/S1097-2765(00)80425-6

Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004; 306: 2090-2093. http://dx.doi.org/10.1126/science.1104742 PMid:15514116 DOI: https://doi.org/10.1126/science.1104742

Osaki S, Johnson DA, Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem.1966;241(12):2746-51. PMid:5912351 DOI: https://doi.org/10.1016/S0021-9258(18)96527-0

Gkouvatsos K, Papanikolaou G, Pantopoulos K. Regulation of iron transport and the role of transferrin. Biochim Byophys Acta. 2012;1820:188-202. http://dx.doi.org/10.1016/j.bbagen.2011.10.013 PMid:22085723 DOI: https://doi.org/10.1016/j.bbagen.2011.10.013

MacGilivray RT, Mendez S, Sinha SK, et al. The complete amino acid sequence of human serum transferring. Proc Natl Acad Sci USA. 1982; 79(8): 2504-2508. http://dx.doi.org/10.1073/pnas.79.8.2504 DOI: https://doi.org/10.1073/pnas.79.8.2504

Thorbecke GJ, Liem HH, Knight S, et al. Sites of formation of the serum proteins transferin and hefnopexin. J Clin Invest. 1973; 52(3):725-731. http://dx.doi.org/10.1172/JCI107234 PMid:4119469 PMCid:PMC302311 DOI: https://doi.org/10.1172/JCI107234

Baker HM, Anderson BF, Baker EN. Dealing with iron: Common structural principles in proteins that transport iron and heme. Proc Natl Acad Sci USA. 2003;100:3579- 83. http://dx.doi.org/10.1073/pnas.0637295100 PMid:12642662 PMCid:PMC152964 DOI: https://doi.org/10.1073/pnas.0637295100

í€isen P. Transferin receptor 1. Int J Biochem Cell Biol. 2004; 36: 2137-43. http://dx.doi.org/10.1016/j.biocel.2004.02.007 DOI: https://doi.org/10.1016/j.biocel.2004.02.007

Rapisarda C, Puppi J, Hughes RD, et al. Transferrin receptor 2 is crucial for iron sensing in human hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2010;299:G778-83. http://dx.doi.org/10.1152/ajpgi.00157.2010 PMid:20576915 PMCid:PMC2950680 DOI: https://doi.org/10.1152/ajpgi.00157.2010

Kurz T, Gustafsson B, Brunk UT. Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic Biol Med. 2011;50:1647-58. http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.014 DOI: https://doi.org/10.1016/j.freeradbiomed.2011.03.014

Harrison PM, Arosio P. The ferritins:molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275(3):161-203. http://dx.doi.org/10.1016/0005-2728(96)00022-9 DOI: https://doi.org/10.1016/0005-2728(96)00022-9

Watt RK. Oxido-reduction is not the only mechanism allowing ions traverse the ferritin protein shell. Biochim Biophys Acta. 2010;1800:745-59 http://dx.doi.org/10.1016/j.bbagen.2010.03.001 DOI: https://doi.org/10.1016/j.bbagen.2010.03.001

Alkhateeb A, Connor JR. Nuclear ferritin: A new role for ferritin in cell biology. Biochim Biophys Acta. 2010;1800:793-7. http://dx.doi.org/10.1016/j.bbagen.2010.03.017 PMid:20347012 DOI: https://doi.org/10.1016/j.bbagen.2010.03.017

Bou-Abdallah F, Santambrogio P, Levi S, et al. Unique iron binding and oxidation properties of human ferritin: A comparative analysis with human Hchain ferritin. J Mol Biol. 2005;347:543-54. http://dx.doi.org/10.1016/j.jmb.2005.01.007 PMid:15755449 DOI: https://doi.org/10.1016/j.jmb.2005.01.007

Nie GN, Chen G, Sheftel AD, et al. In vivo tumor growth is inhibited by cytosolic iron deprivation caused by the expression of mitochondrial ferritin. Blood. 2006;108:2428-34. http://dx.doi.org/10.1182/blood-2006-04-018341 PMid:16757684 DOI: https://doi.org/10.1182/blood-2006-04-018341

Richardson DR, Lane HJR, Becker E, et al. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci USA. 2010; 107:10775-82. http://dx.doi.org/10.1073/pnas.0912925107 PMCid:PMC2890738 DOI: https://doi.org/10.1073/pnas.0912925107

Ozaki M, Awai T, Kawabata M. Iron release from haemosiderin and production of iron-catalysed hidroxyl radicals in vitro. Biochem J. 1988;250:589-95. http://dx.doi.org/10.1042/bj2500589 PMid:2833249 PMCid:PMC1148895 DOI: https://doi.org/10.1042/bj2500589

Knutson MD, Oukka M, Koss LM, et al. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA. 2005; 102:1324-8. http://dx.doi.org/10.1073/pnas.0409409102 PMid:15665091 PMCid:PMC547844 DOI: https://doi.org/10.1073/pnas.0409409102

Poss KD, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA. 1997; 94:10919-24. http://dx.doi.org/10.1073/pnas.94.20.10919 DOI: https://doi.org/10.1073/pnas.94.20.10919

Detivaud L, Nemeth E, Boudjema K, et al. Hepcidin levels in humans are correlated with hepatic iron stores, hemoglobin levels and hepatic function. Blood. 2005;106:746-8. http://dx.doi.org/10.1182/blood-2004-12-4855 PMid:15797999 DOI: https://doi.org/10.1182/blood-2004-12-4855

Weinstein DA, Roy CN, Fleming MD, et al. Inappropriate expression of hepcidin is associated with iron refractory anemia: implication for anemia of chronic disease. Blood. 2002;100:3776-81. http://dx.doi.org/10.1182/blood-2002-04-1260 PMid:12393428 DOI: https://doi.org/10.1182/blood-2002-04-1260

Kemna EH, Tjalsma H, Willems HL, et al. Hepcidin: from discovery to differential diagnosis. Haematologica. 2008;93(1):90-7. http://dx.doi.org/10.3324/haematol.11705 PMid:18166790 DOI: https://doi.org/10.3324/haematol.11705

Valore E, Ganz T. Posttranslational processing of hepcidin in human hepatocytes is mediated by the prohormon convertase furin. Blood Cells Mol Dis. 2008;40:132-38. http://dx.doi.org/10.1016/j.bcmd.2007.07.009 PMCid:PMC2211381 DOI: https://doi.org/10.1016/j.bcmd.2007.07.009

Gagliardo B, Kubat N, Faye A, et al. Pro-hepcidin is unable to degrade iron exporter ferroportin unless maturated by furin-dependent process. J Hepatol. 2009;50:394-401. http://dx.doi.org/10.1016/j.jhep.2008.09.018 DOI: https://doi.org/10.1016/j.jhep.2008.09.018

Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizet V. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood. 2006;107:3727-32. http://dx.doi.org/10.1182/blood-2005-06-2259 PMid:16391018 PMCid:PMC1895778 DOI: https://doi.org/10.1182/blood-2005-06-2259

Bekri S, Gual P, Anty R, Luciani N, Dahman M, Ramesh B, et al. Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology. 2006;131:788 -96. http://dx.doi.org/10.1053/j.gastro.2006.07.007 PMid:16952548 DOI: https://doi.org/10.1053/j.gastro.2006.07.007

Nguyen NB, Callaghan KD, Ghio AJ, Haile DJ, Yang F. Hepcidin expression and iron transport in alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2006;291:L417-25. http://dx.doi.org/10.1152/ajplung.00484.2005 PMid:16648237 DOI: https://doi.org/10.1152/ajplung.00484.2005

Merle U, Fein E, Gehrke SG, Stremmel W, Kulaksiz H. The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation. Endocrinology. 2007;148: 2663-8. http://dx.doi.org/10.1210/en.2006-1331 PMid:17363462 DOI: https://doi.org/10.1210/en.2006-1331

Kulaksiz H, Fein E, Redecker P, Stremmel W, Adler G, Cetin Y. Pancreatic beta-cells express hepcidin, an iron-uptake regulatory peptide. J Endocrinol. 2008;197:241-9. http://dx.doi.org/10.1677/JOE-07-0528 PMid:18434354 DOI: https://doi.org/10.1677/JOE-07-0528

Gnana-Prakasam JP, Martin PM, Mysona BA, Roon P, Smith SB, Ganapathy V. Hepcidin expression in mouse retina and its regulation via lipopolysaccharide/Toll-like receptor-4 pathway independent of Hfe. Biochem J. 2008;411:79 - 88. http://dx.doi.org/10.1042/BJ20071377 PMCid:PMC3731152 DOI: https://doi.org/10.1042/BJ20071377

Isoda M, Hanawa H, Watanabe R, Yoshida T, Toba K, Yoshida K, et al. Expression of the peptide hormone hepcidin increases in cardiomyocytes under myocarditis and myocardial infarction. J Nutr Biochem. 2010;21:749 -56 http://dx.doi.org/10.1016/j.jnutbio.2009.04.009 DOI: https://doi.org/10.1016/j.jnutbio.2009.04.009

De Domenico I, Zhang TY, Koening CL, Branch RW, London N, Lo E, et al. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest. 2010;120:2395-405. http://dx.doi.org/10.1172/JCI42011 PMid:20530874 PMCid:PMC2898601 DOI: https://doi.org/10.1172/JCI42011

Theurl I, Theurl M, Seifert M, Mair S, Nairz M, Rumpold H, et al. Autocrine formation of hepcidin induces iron retention in human monocytes. Blood. 2008;111:2392-9. http://dx.doi.org/10.1182/blood-2007-05-090019 PMid:18073346 DOI: https://doi.org/10.1182/blood-2007-05-090019

Keel SB, Abkowitz JL. The microcytic red cell and the anemia of inflammation. N Engl J Med. 2009;361:1904 -6 http://dx.doi.org/10.1056/NEJMcibr0906391 PMid:19890136 PMCid:PMC3741048 DOI: https://doi.org/10.1056/NEJMcibr0906391

Hunter HN, Fulton DB, Ganz T, et al. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem. 2002; 277:37597-603. http://dx.doi.org/10.1074/jbc.M205305200 PMid:12138110 DOI: https://doi.org/10.1074/jbc.M205305200

Lou DQ, Nicolas G, Lesbordes JC, Viatte L, Grimber G, Szajnert MF, Kahn A, and Vaulont S. Functional differences between íµí¥í¯í¶èäèí­ 1 and 2 in transgenic mice. Blood. 2004;103: 2816-2821. http://dx.doi.org/10.1182/blood-2003-07-2524 PMid:14604961 DOI: https://doi.org/10.1182/blood-2003-07-2524

Ganz T, Nemeth E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol. 2006;290(2):G199-203. http://dx.doi.org/10.1152/ajpgi.00412.2005 PMid:16407589 DOI: https://doi.org/10.1152/ajpgi.00412.2005

Schibli DJ, Hunter HN, Aseyev V, Starner TD, Wiencek JM, McCray PB, Jr, Tack BF, Vogel HJ. The Solution Structures of the Human ?-Defensins Lead to a Better Understanding of the Potent Bactericidal Activity of HBD3 against Staphylococcus aureus. J Biol Chem. 2002;277:8279-8289. http://dx.doi.org/10.1074/jbc.M108830200 PMid:11741980 DOI: https://doi.org/10.1074/jbc.M108830200

Matsuzaki K,Nakayama M, Fukui M,Otaka A, Funakoshi S, Fujii N, Bessho K, Miyajima K. Role of disulfide linkages in tachyplesin-lipid interactions. Biochemistry. 1993; 32:11704-11710. http://dx.doi.org/10.1021/bi00094a029 PMid:8218239 DOI: https://doi.org/10.1021/bi00094a029

Aumelas A, Mangoni M, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A. Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur J Biochem. 1996;237(3):575-83. http://dx.doi.org/10.1111/j.1432-1033.1996.0575p.x PMid:8647100 DOI: https://doi.org/10.1111/j.1432-1033.1996.0575p.x

Berrocal-Lobo M, Segura A, Moreno M, Lopez G, Garcia-Olmedo F, Molina A. Snakin-2, an Antimicrobial Peptide from Potato Whose Gene Is Locally Induced by Wounding and Responds to Pathogen Infection. Plant Physiol. 2002; 128:951-961. http://dx.doi.org/10.1104/pp.010685 PMid:11891250 PMCid:PMC152207 DOI: https://doi.org/10.1104/pp.010685

Park CH, Valore EV, Waring AJ, Ganz T. Adjacent cysteine residues as a redox switch. J Biol Chem. 2001; 276:7806-7810. http://dx.doi.org/10.1074/jbc.M008922200 PMid:11113131 DOI: https://doi.org/10.1074/jbc.M008922200

Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol. 2007;82:934 -45. http://dx.doi.org/10.1189/jlb.0407216 PMid:17609338 DOI: https://doi.org/10.1189/jlb.0407216

Pak M, Lopez MA, Gabayan V, Ganz T, Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108(12):3730-3735. http://dx.doi.org/10.1182/blood-2006-06-028787 PMCid:PMC1895477

Domenico I, Ward DM, Kaplan J. Hepcidin regulation: ironing out the details. J Clin Invest. 2007;117:1755-8. http://dx.doi.org/10.1172/JCI32701 PMCid:PMC1904333 DOI: https://doi.org/10.1172/JCI32701

Justyna P, Ewa Z. The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Prz Gastroenterol. 2014; 9(4): 208-213. DOI: https://doi.org/10.5114/pg.2014.45102

Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 2005;21:659-693. http://dx.doi.org/10.1146/annurev.cellbio.21.022404.142018 DOI: https://doi.org/10.1146/annurev.cellbio.21.022404.142018

Zhao N, Zhang AS, Enns CA. Iron regulation by hepcidin. J Clin Invest. 2013;123(6):2337-43. http://dx.doi.org/10.1172/JCI67225 PMCid:PMC3668831 DOI: https://doi.org/10.1172/JCI67225

Zhang AS, Enns CA. Molecular mechanisms of normal iron homeostasis. Hematology Am Soc Hematol Educ Program. 2009:207-14. http://dx.doi.org/10.1182/asheducation-2009.1.207 PMid:20008200 DOI: https://doi.org/10.1182/asheducation-2009.1.207

Kemna EH, Kartikasari AE, van Tits LJ, í¥t al. Regulation of hepcidin: insights from biochemical analyses on human serum samples. Blood Cells Mol Dis. 2008;40:339-46. http://dx.doi.org/10.1016/j.bcmd.2007.10.002 PMid:18023212 DOI: https://doi.org/10.1016/j.bcmd.2007.10.002

Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110(7):1037-1044. http://dx.doi.org/10.1172/JCI0215686 PMid:12370282 PMCid:PMC151151 DOI: https://doi.org/10.1172/JCI0215686

Nemeth E, Ganz T. Hepcidin and iron-loading anemias. Haematologica. 2006;91(6):727-732.

Ganz T, Nemeth E. Regulation of iron acquisition and iron distribution in mammals. Biochim Biophys Acta. 2006;1763(7):690-699. http://dx.doi.org/10.1016/j.bbamcr.2006.03.014 PMid:16790283 DOI: https://doi.org/10.1016/j.bbamcr.2006.03.014

Pak M, Lopez MA, Gabayan V, Ganz T, Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108(12):3730-3735. http://dx.doi.org/10.1182/blood-2006-06-028787 PMid:16882706 PMCid:PMC1895477 DOI: https://doi.org/10.1182/blood-2006-06-028787

Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010;142:24 -38. http://dx.doi.org/10.1016/j.cell.2010.06.028 PMid:20603012 DOI: https://doi.org/10.1016/j.cell.2010.06.028

Ramos E, Kautz L, Rodriguez R, Hansen M, Gabayan V, Ginzburg Y, et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice. Hepatology. 2011;53:1333-41. http://dx.doi.org/10.1002/hep.24178 PMid:21480335 PMCid:PMC3074982 DOI: https://doi.org/10.1002/hep.24178

Corradini E, Meynard D, Wu Q, Chen S, Ventura P, Pietrangelo A, Babitt JL. Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice. Hepatology. 2011;54:273-84. http://dx.doi.org/10.1002/hep.24359 PMid:21488083 PMCid:PMC3277401 DOI: https://doi.org/10.1002/hep.24359

Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet. 2006;38:531-9. http://dx.doi.org/10.1038/ng1777 PMid:16604073 DOI: https://doi.org/10.1038/ng1777

Finberg KE, Whittlesey RL, Fleming MD, Andrews NC. Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood. 2010;115: 3817-26. http://dx.doi.org/10.1182/blood-2009-05-224808 PMCid:PMC2865872 DOI: https://doi.org/10.1182/blood-2009-05-224808

Silvestri L, Pagani A, Nai A, De D, I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8:502-11. http://dx.doi.org/10.1016/j.cmet.2008.09.012 PMid:18976966 PMCid:PMC2648389 DOI: https://doi.org/10.1016/j.cmet.2008.09.012

Lin L, Valore EV, Nemeth E, Goodnough JB, Gabayan V, Ganz T. Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4. Blood. 2007; 110: 2182-2189. http://dx.doi.org/10.1182/blood-2007-04-087593 PMid:17540841 PMCid:PMC1976373 DOI: https://doi.org/10.1182/blood-2007-04-087593

Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest. 2007;117: 1933-1939. http://dx.doi.org/10.1172/JCI31342 PMid:17607365 PMCid:PMC1904317 DOI: https://doi.org/10.1172/JCI31342

Schmidt PJ, Toran PT, Giannetti AM, Bjorkman PJ, Andrews NC. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab. 2008;7: 205-214. http://dx.doi.org/10.1016/j.cmet.2007.11.016 PMCid:PMC2292811 DOI: https://doi.org/10.1016/j.cmet.2007.11.016

Goswami T, Andrews NC. Hereditary hemochromatosis protein HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem. 2006; 281: 28494-28498. http://dx.doi.org/10.1074/jbc.C600197200 DOI: https://doi.org/10.1074/jbc.C600197200

Gao J, Chen J, Kramer M, Tsukamoto H, Zhang AS, Enns CA. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metab. 2009;9(3):217-227. http://dx.doi.org/10.1016/j.cmet.2009.01.010 PMid:19254567 PMCid:PMC2673483 DOI: https://doi.org/10.1016/j.cmet.2009.01.010

Nicolas G, Viatte L, Bennoun M, Beaumont C, Kahn A, Vaulont S. Hepcidin, a new iron regulatory peptide. Blood Cells Mol Dis. 2002; 29: 327-35. http://dx.doi.org/10.1006/bcmd.2002.0573 PMid:12547223 DOI: https://doi.org/10.1006/bcmd.2002.0573

Pinto JP, Ribeiro S, Pontes H, Thowfeequ S, Tosh D, Carvalho F, Porto G. Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPalpha. Blood. 2008;111:5727-33. http://dx.doi.org/10.1182/blood-2007-08-106195 PMid:18326822 PMCid:PMC2597200 DOI: https://doi.org/10.1182/blood-2007-08-106195

Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD, et al. Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin. Haematologica. 2010;95:505-8. http://dx.doi.org/10.3324/haematol.2009.013136 PMCid:PMC2833083 DOI: https://doi.org/10.3324/haematol.2009.013136

Vokurka M, Krijt J, Sulc K, Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol Res. 2006;55:667- 74. PMid:16497104 DOI: https://doi.org/10.33549/physiolres.930841

Kearney SL, Nemeth E, Neufeld EJ, Thapa D, Ganz T, Weinstein DA,Cunningham MJ: Urinary hepcidin in congenital chronic anemias. Pediatr Blood Cancer. 2007; 48: 57-63. http://dx.doi.org/10.1002/pbc.20616 PMid:16220548 DOI: https://doi.org/10.1002/pbc.20616

Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, High levels of GDF15 in thalassemia supress expression of the iron regulatory protein hepcidin. Nat Med. 2007; 13: 1096-1101. http://dx.doi.org/10.1038/nm1629 PMid:17721544 DOI: https://doi.org/10.1038/nm1629

Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113:1271-6. http://dx.doi.org/10.1172/JCI200420945 PMCid:PMC398432 DOI: https://doi.org/10.1172/JCI200420945

Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, et al. Regulation of iron homeostasis by the hypoxiainducible transcription factors (HIFs). J Clin Invest. 2007;117:1926 -32. http://dx.doi.org/10.1172/JCI31370 PMid:17557118 PMCid:PMC1884690 DOI: https://doi.org/10.1172/JCI31370

Silvestri L, Pagani A, Camaschella C. Furinmediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood. 2008;111:924 -31. http://dx.doi.org/10.1182/blood-2007-07-100677 PMid:17938254 DOI: https://doi.org/10.1182/blood-2007-07-100677

Lakhal S, Schoedel J, Townsend AR, Pugh CW, Ratcliffe PJ, Mole DR. Regulation of type II transmembrane serine proteinase TMPRSS6 by hypoxia-inducible factors: new link between hypoxia signalling and iron homeostasis. J Biol Chem. 2011;286:4090 -7. http://dx.doi.org/10.1074/jbc.M110.173096 PMid:20966077 PMCid:PMC3039360 DOI: https://doi.org/10.1074/jbc.M110.173096

Peyssonnaux C, Nizet V, Johnson RS. Role of the hypoxia inducible factors HIF in iron metabolism. Cell Cycle. 2008;7(1):28-32. http://dx.doi.org/10.4161/cc.7.1.5145 PMid:18212530 DOI: https://doi.org/10.4161/cc.7.1.5145

Choi SO, Cho YS, Kim HL, Park JW. ROS mediate the hypoxic repression of the hepcidin gene by inhibiting C/EBPalpha and STAT-3. Biochem Biophys Res Commun. 2007;356(1):312-317. http://dx.doi.org/10.1016/j.bbrc.2007.02.137 PMid:17349976 DOI: https://doi.org/10.1016/j.bbrc.2007.02.137

Braliou GG, Verga Falzacappa MV, Chachami G, Casanovas G, Muckenthaler MU, Simos G. 2-Oxoglutarate-dependent oxygenases control hepcidin gene expression. J Hepatol. 2008;48(5):801-810. http://dx.doi.org/10.1016/j.jhep.2007.12.021 PMid:18313788 DOI: https://doi.org/10.1016/j.jhep.2007.12.021

Lok CN, Ponka P. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem. 1999;274(34):24147-24152. http://dx.doi.org/10.1074/jbc.274.34.24147 DOI: https://doi.org/10.1074/jbc.274.34.24147

Tacchini L, Bianchi L, Bernelli-Zazzera A, Cairo G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem. 1999; 274(34):24142-24146. http://dx.doi.org/10.1074/jbc.274.34.24142 PMid:10446187 DOI: https://doi.org/10.1074/jbc.274.34.24142

Mole DR. Iron homeostasis and its interaction with prolyl hydroxylases. Antioxid Redox Signal. 2010;12(4):445-58. http://dx.doi.org/10.1089/ars.2009.2790 PMid:19650690 DOI: https://doi.org/10.1089/ars.2009.2790

Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin,serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005;106(5):1864-1866. http://dx.doi.org/10.1182/blood-2005-03-1159 PMid:15886319 DOI: https://doi.org/10.1182/blood-2005-03-1159

Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010;30:105-122. http://dx.doi.org/10.1146/annurev.nutr.012809.104804 PMid:20420524 PMCid:PMC3108097 DOI: https://doi.org/10.1146/annurev.nutr.012809.104804

Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101(7):2461-2463. http://dx.doi.org/10.1182/blood-2002-10-3235 PMid:12433676 DOI: https://doi.org/10.1182/blood-2002-10-3235

Tessel E, Galesloot SV, Anneke JGM, Siem MK. Serum hepcidin: reference ranges and biochemical correlates in the general population. Blood. 2011. 23;117(25):e218-25. DOI: https://doi.org/10.1182/blood-2011-02-337907

Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011-1023. http://dx.doi.org/10.1056/NEJMra041809 PMid:15758012 DOI: https://doi.org/10.1056/NEJMra041809

Papanikolaou G, Tzilianos M, Christakis JI, Bogdanos D, Tsimirika K,MacFarlane J, Goldberg YP, Sakellaropoulos N, Ganz T, Nemeth E: Hepcidin in iron overload disorders. Blood. 2005; 105: 4103-4105. http://dx.doi.org/10.1182/blood-2004-12-4844 PMid:15671438 PMCid:PMC1895089 DOI: https://doi.org/10.1182/blood-2004-12-4844

Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108(9):3204-3209. http://dx.doi.org/10.1182/blood-2006-06-027631 PMid:16835372 PMCid:PMC1895528 DOI: https://doi.org/10.1182/blood-2006-06-027631

Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, Muckenthaler MU. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood. 2007;109(1):353-358. http://dx.doi.org/10.1182/blood-2006-07-033969 DOI: https://doi.org/10.1182/blood-2006-07-033969

Pietrangelo A, Dierssen U, Valli L, Garuti C, Rump A, Corradini E, Ernst M, Klein C, Trautwein C. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology. 2007;132(1):294-300. http://dx.doi.org/10.1053/j.gastro.2006.10.018 PMid:17241879 DOI: https://doi.org/10.1053/j.gastro.2006.10.018

Lee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci USA. 2005;102(6):1906-1910. http://dx.doi.org/10.1073/pnas.0409808102 PMid:15684062 PMCid:PMC548537 DOI: https://doi.org/10.1073/pnas.0409808102

Wang RH, Li C, Xu X, et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab. 2005;2(6):399-409. http://dx.doi.org/10.1016/j.cmet.2005.10.010 PMid:16330325 DOI: https://doi.org/10.1016/j.cmet.2005.10.010

Yu PB, Hong CC, Sachidanandan C, et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol. 2008;4(1):33-41. http://dx.doi.org/10.1038/nchembio.2007.54 PMid:18026094 PMCid:PMC2727650 DOI: https://doi.org/10.1038/nchembio.2007.54

Zhang K, Shen X, Wu J, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 2006;124(3):587-599. http://dx.doi.org/10.1016/j.cell.2005.11.040 PMid:16469704 DOI: https://doi.org/10.1016/j.cell.2005.11.040

Oliveira SJ, Pinto JP, Picarote G, et al. ER stress-inducible factor CHOP affects the expression of hepcidin by modulating C/EBPalpha activity. PLoS One. 2009;4(8):e6618. http://dx.doi.org/10.1371/journal.pone.0006618 PMid:19672300 PMCid:PMC2719873 DOI: https://doi.org/10.1371/journal.pone.0006618

Peslova G, Petrak J, Kuzelova K, Hrdy I, Halada P, Kuchel P, et al. Hepcidin, the hormone of iron metabolism, is bound specifically to alpha-2-macroglobulin in blood. Blood. 2009; 113: 6225-36. http://dx.doi.org/10.1182/blood-2009-01-201590 PMid:19380872 DOI: https://doi.org/10.1182/blood-2009-01-201590

Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008; 112: 4292-7. http://dx.doi.org/10.1182/blood-2008-02-139915 PMid:18689548 DOI: https://doi.org/10.1182/blood-2008-02-139915

132. Swinkels DW, Girelli D, Laarakkers C, Kroot J, Campostrini N,Kemna EH,Tjalsma H. Advances in quantitative hepcidin measurements by time-of-flight mass spectrometry. PLoS ONE. 2008; 3: e2706. http://dx.doi.org/10.1371/journal.pone.0002706 PMCid:PMC2442656 DOI: https://doi.org/10.1371/journal.pone.0002706

Kroot JJ, Tjalsma H, Fleming RE, Swinkels DW.Hepcidin in human iron disorders: diagnostic implications. Clin Chem. 2011;57(12):1650-69. http://dx.doi.org/10.1373/clinchem.2009.140053 DOI: https://doi.org/10.1373/clinchem.2009.140053

Tomosugi N, Kawabata H, Wakatabe R, Higuchi M, Yamaya, Umehara H, Ishikawa I. Detection of serum hepcidin in renal failure and inflammation by using Protein Chip System. Blood. 2006; 108: 1381-7. http://dx.doi.org/10.1182/blood-2005-10-4043 DOI: https://doi.org/10.1182/blood-2005-10-4043

Peters HP, Laarakkers CM, Swinkels DW, Wetzels JF. Serum hepcidin-25 levels in patients with chronic kidney disease are independent of glomerular filtration rate. Nephrol Dial Transplant. 2010; 25: 848-53. http://dx.doi.org/10.1093/ndt/gfp546 DOI: https://doi.org/10.1093/ndt/gfp546

Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD, et al. Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease. Kidney Int. 2009; 75: 976-81. http://dx.doi.org/10.1038/ki.2009.21 PMid:19212416 DOI: https://doi.org/10.1038/ki.2009.21

Costa E, Swinkels DW, Laarakkers CM, Rocha-Pereira P, Rocha S, Reis F. et al. Hepcidin serum levels and resistance to recombinant human erythropoietin therapy in haemodialysis patients. Acta Haematol. 2009; 122: 226-9. http://dx.doi.org/10.1159/000253590 DOI: https://doi.org/10.1159/000253590